Low energy scattering for nonlinear Klein-Gordon equations
نویسندگان
چکیده
منابع مشابه
Scattering theory for Klein-Gordon equations with non-positive energy
We study the scattering theory for charged Klein-Gordon equations: (∂t − iv(x))2φ(t, x) + (x,Dx)φ(t, x) = 0, φ(0, x) = f0, i−1∂tφ(0, x) = f1, where: (x,Dx) = − ∑ 1≤j,k≤n ( ∂xj − ibj(x) ) a(x) (∂xk − ibk(x)) +m (x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x) and magnetic potential ~b(x). The flow of the Kle...
متن کاملStrong Instability of Standing Waves for Nonlinear Klein-gordon Equations
The strong instability of ground state standing wave solutions eφω(x) for nonlinear Klein-Gordon equations has been known only for the case ω = 0. In this paper we prove the strong instability for small frequency ω.
متن کاملGalerkin Finite Element Methods for Nonlinear Klein-gordon Equations
We consider Galerkin finite element methods for the nonlinear Klein-Gordon equation, giving the first optimal-order energy norm semidiscrete error estimates for non-Lipschitz nonlinearity. The result holds quite generally in one and two space dimensions and under a certain growth restriction in three. We also discuss some time stepping strategies and present numerical results.
متن کاملNonlinear Klein-Gordon Equation
An extended ( ′ G )–expansion method is obtained by improving the form of solution in ( G′ G )– expansion method which is proposed in recent years. By using the extended ( ′ G )–expansion method and with the aid of homogeneous balance principle, many explicit and exact travelling wave solutions with two arbitrary parameters to the Klein-Gordon equation are presented, including the hyperbolic so...
متن کاملNumerical Treatment of Coupled Nonlinear Hyperbolic Klein-gordon Equations
E.H. DOHA1,a, A.H. BHRAWY2,3,b, D. BALEANU4,5,6,c, M.A. ABDELKAWY3,d 1Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt, E-mail: [email protected] 2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia, E-mail: [email protected] 3Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1985
ISSN: 0022-1236
DOI: 10.1016/0022-1236(85)90100-4